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Abstract
Despite advances in cancer therapy, treating cancer after it has metastasized remains an unmet
clinical challenge. In this study we demonstrate that 100 nm liposomes target triple-negative
murine breast-cancer metastases post intravenous administration. Metastatic breast cancer was
induced in BALB/c mice either experimentally, by a tail vein injection of 4T1 cells, or
spontaneously, after implanting a primary tumor xenograft. To track their biodistribution in vivo
the liposomes were labeled with multi-modal diagnostic agents, including indocyanine green and
rhodamine for whole-animal fluorescent imaging, gadolinium for magnetic resonance imaging
(MRI), and europium for a quantitative biodistribution analysis. The accumulation of liposomes
in the metastases peaked at 24 h post the intravenous administration, similar to the time they
peaked in the primary tumor. The efficiency of liposomal targeting to the metastatic tissue
exceeded that of a non-liposomal agent by 4.5-fold. Liposomes were detected at very early
stages in the metastatic progression, including metastatic lesions smaller than 2 mm in diameter.
Surprisingly, while nanoparticles target breast cancer metastasis, they may also be found in
elevated levels in the pre-metastatic niche, several days before metastases are visualized by MRI
or histologically in the tissue. This study highlights the promise of diagnostic and therapeutic
nanoparticles for treating metastatic cancer, possibly even for preventing the onset of the
metastatic dissemination by targeting the pre-metastatic niche.

Keywords: nanoparticles, nanotechnology, breast cancer, metastasis, liposome, targeted drug
delivery

(Some figures may appear in colour only in the online journal)

Introduction

Breast cancer is the most prevalent cancer among women [1].
The stage at which the disease is diagnosed is an important
predictor of prognosis. Up to 99% of patients diagnosed and
treated for a confined primary breast cancer tumor will live
beyond five years [2]. The prognosis of those diagnosed with
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a metastatic disease worsens dramatically, with only 23% of
patients surviving beyond five years [2, 3].

Metastasis is defined as one, or multiple, cancer lesions
that spread to a tissue that is distant to the primary tumor.

The primary tumor sheds nearly one-million cancer cells
per gram tumor every day into circulation [4–6]. A well-
established theory is that these circulating cells colonize at
distant sites, seeding metastases [6, 7]. The main sites of
breast-cancer metastases are the lungs, liver and bone [8]. As
the metastases progress, they impair the function of these vital
organs.

Common therapeutic options become limited when
dealing with metastases [9]. Surgery is extremely effective in
treating localized primary tumors but is rarely an option for
resecting multiple metastatic lesions [10]. Medication, admi-
nistered orally or intravenously, may not reach the metastatic
sites in sufficient doses to be effective [11, 12]. Targeted
therapies and immunotherapies offer a new and promising
avenue for treating the metastatic disease [13–15]. Specifi-
cally, nanotechnologies that are targeted simultaneously to
multiple metastatic sites in the body while carrying small-
molecule drugs, proteins, nucleic acids or imaging agents,
will enable management of metastatic cancer [16–26].

In this study, we assessed the ability of nanoparticles to
target triple-negative breast cancer (TNBC) metastases in vivo
. TNBC is characterized by the lack of expression of two
hormone receptors (estrogen and progesterone) and a defi-
ciency of human epidermal growth factor receptor 2 (HER2).
These cell-surface receptors are utilized for targeting medi-
cines to the cancerous lesions. In their absence, TNBC has
limited treatment options and a poor prognosis [27].

Targeting nanoparticles to cancerous tissues can exploit
physical or biological mechanisms [28–34], one of which is
targeting the leaky vasculature in cancerous tissue [35, 36]. In
contrast to normal tissues, solid tumors undergo unregulated
angiogenesis, providing the tumor with vasculature to supply
the metabolic needs of the rapidly dividing cancerous cells
[37]. The resultant blood vessels exhibit a discontinuous
endothelial-cell lining, with gaps ranging from 200 to
2000 nm between individual endothelial cells [38–40]. The
poor architecture of the tumor vasculature is an access point
for therapeutic nanoparticles circulating in the blood [41]. In
order to penetrate the tumor, the nano dimensions of the drug
carriers must be smaller than the size of the pores in the
vasculature. Experimental studies show that particles smaller
than 150 nm are advantageous for tumor penetration [8, 42].
Once the nanoparticles penetrate the tumor vasculature, they
are taken up by cells [43], or are retained in the extracellular
matrix. Nanoparticles are usually not trafficked out of the
tumor region, because of the impaired lymphatic drainage in
tumors [44–46]. This phenomenon, in which nanoparticles
accumulate in cancerous tissues post intravenous adminis-
tration, has been coined the enhanced permeability and
retention (EPR) effect, or passive targeting [47–49].

In breast cancer, the EPR effect is leveraged clinically to
target nanomedicines to the primary tumor [48, 50–52].

In total, nearly 250 nanotechnologies have either been
approved or are in advanced approval stages by the FDA and

EMA for treating a wide range of diseases, including breast
cancer [53–59]. For example, Doxil is a 100 nm PEGylated
liposome formulation loaded with the chemotherapeutic agent
doxorubicin, and is used in first-line breast cancer manage-
ment [60]. PEG (polyethylene glycol) on the surface of the
liposomes increases their half-life in the circulation and
reduces the uptake of the nanoparticle by the mononuclear
phagocyte system [48, 61]. These liposomes were shown to
target tumors in patients [48], while reducing life-threatening
side-effects, such as cardiomyopathy [62]. Another clinical
nanotechnology used for breast cancer treatment is Abraxane
—130 nm albumin nanoparticles loaded with the microtubule
inhibitor paclitaxel [63].

In this study, we examined whether intravenously
injected PEGylated liposomes can target breast cancer
metastases. We studied the effect of several disease condi-
tions on nanoparticle accumulation at the metastatic site,
including the size of the metastases, the presence or absence
of a primary tumor alongside the metastases, and the size of
the metastatic lesion.

Materials and methods

Study design

This study compared the biodistribution of 100 nm liposomes
to the primary tumor and metastasis, post intravenous injec-
tion. Three disease models were compared to mirror the
clinical scenario: (1) tumor alone, mimicking the existence of
a primary tumor; (2) metastasis alone, mimicking metastatic
development after resection of the primary tumor; and (3)
tumor plus induced lung metastasis, mimicking an advanced
stage of the disease (figure 1).

Liposome preparation

Liposomes were prepared as previously described [64].
Briefly, liposomes were composed of 55 mole% hydrogenated
soybean phosphatidylcholine (HSPC; Lipoid, Ludwigshafen,
Germany); 40 mole% cholesterol (Sigma-Aldrich) and
5 mole% PEG distearoyl-phosphoethanolamine (m2000PEG-
DSPE, MW 2810; Lipoid). For sulforhodamine-labeled
liposomes, 0.04 mole% of 1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine-N-lissamine rhodamine B sulfonyl-
ammonium salt (16:0 Liss Rhod PE; Avanti Polar Lipids,
Alabaster, Alabama) were added.

The lipids were dissolved in chloroform. The solvent was
then evaporated under reduced pressure at 55 °C, 100 mbar,
using a R-210 Rotorvaporator (Buchi, Switzerland). The dry
lipid film was then hydrated with 5% w/v dextrose or
phosphate buffered saline (PBS), depending on the entrapped
molecule (see below), to reach a final lipid concentration
of 50 mM.

Contrast agent molecules used in this study included
indocyanine green dye (ICG, Sigma-Aldrich) [65], 0.13 mM
in 5% w/v dextrose; europium chloride hexahydrate (Eu,
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Sigma-Aldrich, [66]), 185 mM in 5% w/v dextrose; and
gadopentetic acid (Gd, Sigma-Aldrich), 500 mM in PBS.

To produce nanoscale vesicles, the liposomes were
extruded (Lipex Extruder, Northern Lipids, Vancouver,
Canada) in a stepwise manner at 60 °C through polycarbonate
membrane filters (Whatman, Newton, USA) with 400, 200,
and 100 nm pores. Four extrusion steps were applied per filter
type. After extrusion, the liposome suspension was dialyzed

against 5% w/v dextrose or PBS solution using a 12–14 kDa
dialysis tube to remove non-entrapped materials.

Liposome size distribution was measured by dynamic
light scattering using a Zetasizer Nano ZSP (Malvern
Instruments, UK). Samples were diluted 1–100 in the
appropriate buffer. Sizing measurements were conducted at
room temperature and the back-scattered light was detected at
an angle of 173°.

Figure 1.Metastatic models and liposome characterization. (A) 100 nm liposomes were loaded with rare earths and contrast agents, and their
biodistribution to triple-negative breast cancer (TNBC) metastasis, primary TNBC tumors, or both, were evaluated quantitatively and
qualitatively in mice. Liposomes were loaded with traces of rare-earths and clinical contrast agents, including indocyanine green (ICG),
rhodamine, gadolinium (Gd) and europium (Eu). The liposomal biodistribution to the cancerous tissues was evaluated quantitatively, using
ICP, and qualitatively, by MRI and whole-animal fluorescent imaging. Liposomes were sized around 100 nm using dynamic light scattering
(B) and cryoTEM microscopy (C). ICG-liposomes have a far-red fluorescent emission that can be detected in the cancerous tissue (D).
Metastatic levels of Eu and Gd were measured analytically by ICP (E) or using MRI. Experimental TNBC lung metastases occur in BALB/c
mice after injecting 4T1 cells intravenously (F). The metastatic lesions have a white, blister-like, appearance within the pink lung tissue.
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CryoTEM imaging of the liposomes was performed as
follows: lipid dispersions at concentration of 5 mM are pre-
pared in a controlled-environment vitrification system at
25 °C and 100% relative humidity and examined in a Philips
CM120 cryo-electron microscope operated at 120 kV. Spe-
cimens were equilibrated in the microscope below –178 °C,
then examined in the low-dose imaging mode to minimize
electron beam radiation damage, and recorded at a nominal
under-focus of 4–7 nm to enhance phase contrast an Oxford
CT-3500 cooling holder was used. Images were recorded
digitally by a Gatan MultiScan 791 CCD camera using the
Digital Micrograph 3.1 software package (Gatan).

ICG entrapment was determined using an Infinite
200PRO multimode plate reader (Tecan, Switzerland), exci-
tation/emission 780/810 nm. For this, the liposomes were
dissociated using the Bligh and Dyer method [67]. Briefly,
liposomes were diluted in the volume ratio of liposome:
chloroform:methanol:water of 0.8:2:2:1 in order to obtain two
separate phases; (1) an organic phase that contained all the
lipids and (2) an aqueous phase that contained all the water-
soluble materials. The absorbance of the ICG in water phase
was measured.

Eu/Gd entrapment was determined using inductively
coupled plasma optical emission spectroscopy (ICP-OES,
5100 system, Agilent Technologies, US). The amount of
metal was calculated using a calibration curve according to
Europium/Gadolinium ICP standards (Sigma-Aldrich,
Rehovot, Israel).

Cell culture

A TNBC cell line, 4T1 (ATCC), was used to induce primary
tumors and metastasis. Cells were cultured at 37 °C in a
humidified atmosphere and 5% CO2 in air. RPMI 1640
medium, supplemented with 10% heat inactivated Fetal
Bovine Serum, 1% v/v Penicillin-Streptomycin solution
(10 000 Uml−1 of Penicillin G Sodium Salt and 10 mg ml−1

of Streptomycin Sulfate), and 1% v/v L-Glutamine (all from
Biological Industries, Beit Haemek, Israel). The cells were
washed thoroughly with PBS at 4 °C before injection.

In vivo

All animal studies were approved and performed according to
the guidelines of the Institutional Animal Research Ethical
Committee at the Technion—Israel Institute of Technology.
Animal welfare was monitored daily both by the researchers
and staff veterinarians.

Eight to ten-week-old (∼20 gr) BALB/c female mice
(Harlan laboratories, Jerusalem, Israel) were used for all
animal models.

Inducing primary tumors. 1×106 4T1 cells in 100 μl of
PBS were injected subcutaneously (SC) into the rear right
flank; 500 mm3 tumors developed approx. 14 d post injection.

Experimental metastasis. 2×105 4T1 cells in 100 μl of
PBS were injected intravenously (IV) via the tail vein; lung
metastasis developed 14 d post injection.

Combined primary tumor and metastasis. 2×105 4T1 cells
in 100 μl of PBS were injected IV, to form metastases; and an
additional 7×105 4T1 cells in 100 μl of PBS were injected
SC, to form the primary tumor. Both the primary tumor and
metastasis formed ∼14 d post injection.

Spontaneous metastasis and the pre-metastatic niche.
5×105 4T1 cells in 100 μl of PBS were injected SC to the
rear right flank to induce the formation of a primary tumor,
metastasis evolved spontaneously in the lungs 3–4 weeks
later. During the time between the induction of the primary
tumor and the histological detection of metastases, a pre-
metastatic niche is formed in the lung, conditioning this tissue
to harbor the disseminated metastatic cells.

Quantitative biodistribution analysis

Once the metastases evolved mice were injected intrave-
nously with 300 μl Gd-loaded liposomes (100 nm, 50 mM
lipid). Twenty-four hours after the injection, the mice were
sacrificed and the metastatic lesions were excised and ana-
lyzed for the liposome presence using Gd ICP analysis.

MR imaging

MRI scans were acquired using a 1 T micro-MRI (Aspect M2
MRI, Aspect Imaging, Modi’in, Israel) equipped with a
cylindrical radiofrequency volume coil (35 mm inner dia-
meter) for signal excitation and reception. During imaging the
animal was placed in a coronal position on a holder and kept
anaesthetized with 0.5%–1.5% Isoflurane, supplemented with
oxygen (0.8 l min−1) via a facial mask. The respiratory rate of
the mice was monitored using a pressure pad (Aspect M2,
Aspect Imaging, Israel) located on the abdomen.

Two scan sets, T2 and T1 weighted, were acquired for
each animal: (i) FSE (Fast Spin Echo) sequence, slice
thickness=0.9 mm, slice gap=0.1 mm, FOV=5×5 cm,
matrix dimension=200×200, spatial
resolution=250×250 μm2, repetition/echo time (TR/
TE)=2253/53 ms, number of excitations=2, number of
averages=4; and (ii) GRE-SP (Gradient Echo) sequence,
slice thickness=1 mm, FOV=5×5 cm, matrix dimen-
sion=200×200, spatial resolution=250×250 μm2,
repetition/echo time (TR/TE)=12.6/3.2 ms, number of
excitations=6.

Image processing was performed using MRI image
analysis and a MATLAB based software (MRItool). For each
image, regions of interest in the lungs were manually seg-
mented to measure the total signal intensity, average signal,
and area.
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Fluorescent imaging

100 μl ICG liposomes (100 nm, 50 mM lipid) or the same
amount of free (non-liposomal) ICG was injected IV via the
mouse tail vein. Animals were sacrificed at time intervals of
0, 3, 6, 12, 24, and 48 h post injection, and the metastatic
lungs and or tumors were excised and imaged using a
MaestroEX in vivo fluorescent imaging system equipped with
an excitation filter at 690 nm. A 750 nm long-pass emission
filter was applied to prevent the interference of excitation light
with the charge coupled device (CCD) camera. In vivo
spectral imaging from 780 to 820 nm (in 10 nm steps) was
carried out with an exposure time of 5000 ms for each image
frame. Background was removed by using the spectral
unmixing software (Maestro 2p20).

Gd-rhodamine liposomes (enabling dual imaging mod-
alities; Gd—MRI; and rhodamine—fluorescent) were injected
IV (300 μl); 24 and 48 h after the injection mice were scanned
by MRI, then the lungs were resected and analyzed histolo-
gically to visualize the exact tissue deposition of the lipo-
somes [68].

Quantification of Eu and Gd delivery to tumor and metastasis

After imaging, organ samples were washed thoroughly with
PBS, dried and weighed. Europium (Eu) or Gadolinium (Gd)
content in the organs was quantified using ICP. For this
purpose samples were carbonized at 500 °C for 5 h and their
ash was dissolved in nitric acid 1% v/v (Bio Labs, Israel).

Histology

After sacrificing the mice, the lungs were removed and kept in
10% neutral buffered formalin (Sigma) at room temperature.
Later, the tissues were paraffin embedded and sectioned into
5 μm slides. Slides were stained with hematoxylin and eosin
(H&E) to evaluate the general morphology and further stained
with 4′,6-diamidino-2-phenylindole (DAPI) for fluorescence
imaging.

All data groups we analyzed statistically using an
unpaired, two-sided Student’s t-test. Confidence level was
taken to be P=0.05.

Results and discussion

Breast cancer is a global epidemic [69], of which the meta-
static condition is the most lethal [70]. Nearly 250 000
patients are diagnosed annually with metastatic breast cancer
in the US alone, and more than 40 000 die of this condition
[71]. In developing countries too, numbers of breast cancer
patients are increasing as life span, awareness to cancer and
medical infrastructures are improving [72, 73]. Diagnosing
and treating metastatic TNBC, a subtype of breast cancer, is
especially challenging, due to the lack of biological drugs that
can target this condition [74].

In this study, we investigated whether 100 nm liposomes
can target TNBC metastases in vivo.

Three murine disease models that mirror relevant clinical
scenarios were studied: (1) Targeting a primary tumor alone
—modeling the early stages of the disease; (2) Targeting
metastasis alone—modeling the metastatic disease after a
primary tumor has been resected; and, (3) Targeting both the
metastases and a primary tumor simultaneously—modeling a
metastatic disease with a non-resected primary tumor
(figure 1(A)). In addition, two complementary experimental
approaches were employed to induce metastases. The first is
‘experimental metastasis’, in which triple-negative (4T1)
cancer cells are injected intravenously to induce lung metas-
tases in BALB/c mice [75–77]. Experimental metastasis is
commonly used because of its experimental reproducibility
[75, 78]. Moreover, we studied nanoparticle biodistribution to
a ‘spontaneous metastatic model’, in which a primary 4T1
tumor xenograft was implanted in mice, spontaneously
seeding distant metastases [75].

We first studied the ability of 100 nm liposomes to
accumulate in primary breast cancer tumors. For this, we
compared the biodistribution of liposomes loaded with ICG (a
clinical contrast agent) to an equal amount of free ICG
injected intravenously (figure 2(A)). Animals injected with
the free dye had a maximal fluorescent signal in the primary
tumor 3 h post intravenous administration, after which the
signal decayed (figure 2(B)). In comparison, the accumulation
of liposomes peaked in the tumor after 24 h. The intensity of
the fluorescent signal in tumors of mice injected with the
ICG-liposomes was 4.5-fold greater than the maximal signal
in tumors of mice injected with the free dye [79]. These data
confirm previous findings that nanoparticulate systems have
an advantage over the free small molecules in accumulating in
primary tumor [35, 48, 80]. The mechanism governing
nanoparticle biodistribution to primary tumors has been
shown to be dependent on the nanoparticles’ half-life in cir-
culation as well as their ability to extravasate through the
compromised tumor vasculature [81–85]. PEG conjugated to
the corona of the liposomes extends the liposomes’ circula-
tion time in vivo [86], and their nano-dimensions facilitates
extravasation through the compromised tumor vascu-
lature [87, 88].

After confirming the liposomes were detected in the
primary tumor, we tested whether 100 nm liposomes can also
be detected in the metastasis post intravenous administration.
For this, experimental TNBC metastasis was induced in the
lungs of BALB/c mice. Liposomes containing ICG or free
ICG were injected intravenously, and the mice were imaged
over 48 h. A fluorescent signal was detected in the metastatic
lungs after the injection (figure 2(A)). Similar to the primary
tumor, the free dye biodistribution in the metastases peaked
after 3 h and the nanoparticles peaked at 24 h post intravenous
injection (figure 2(C)). The similar kinetics in the primary
tumor and metastases, suggest that a similar mechanism
governs accumulation in both, namely, extravasation of the
nanoparticles from the circulation into the metastatic lesions
[89, 90]. If the patient is diagnosed after cancer has already
metastasized, the primary tumor is usually not resected
[91–96]. To this end, we studied the liposome accumulation
in metastasis in the presence, or absence, of a primary tumor.
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The presence of a primary tumor decreased liposome accu-
mulation at the metastatic site (figure 2(D)). The accumula-
tion of the liposomes in metastases, in the absence of a
primary tumor reached 3.4%±0.3% of the injected dose per
gram tissue. In comparison, when the primary tumor coex-
isted with the metastasis, the accumulation of the liposomes in
the metastasis declined to 1.6%±0.6% (figure 2(D)). This is
explained by a sink effect the primary tumor has on liposomal
biodistribution, in which liposomes are deterred from the
circulation to the primary tumor reducing their accumulation
in the metastasis [5, 38, 97–101]. Furthermore, previous
studies have demonstrated that the primary tumor suppresses

vascular progression in the disseminated metastasis
[102–106], thereby possibly reducing the ability of liposomes
to extravasate from the capillaries into the metastasis [107].
While in the clinical scenario, there is controversy whether
resection of the primary tumor in patients with metastatic
breast cancer improves prognosis [91–95]. Our data suggest
that nanoparticles target metastases more effectively in the
absence of a primary tumor.

While fluorescent imaging is used mainly for pre-clinical
cancer research, MRI is a common imaging modality for
diagnosing cancer clinically. We tested whether nanoparticles
can also be detected in the metastatic lesions by MRI and their

Figure 2. Nanoparticles accumulate in primary tumors and lung metastasis 24 h after intravenous injection. (A) Indocyanine green (ICG)-
containing liposomes, or free ICG, was injected intravenously to BALB/c mice and the biodistribution to the primary tumors and metastases
was tracked using whole-animal fluorescent imaging. The intensities of the fluorescent ICG signals were measured in the primary tumor (B)
and metastases (C). The accumulation of Eu-loaded liposomes in metastases, in the presence or absence of a primary tumor, was compared
24 h post injection (D). (0) indicates imaging before the liposomes were injected. Data is shown as the mean ± SDE of n=5; *P<0.05.
Differences between two means were tested using an unpaired, two-sided student’s t-test.
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Figure 3. Nanoparticles accumulate in millimeter-sized lung metastases. The localization of liposomes inside the metastatic tissue was
examined. Gd-liposomes were injected intravenously to metastases-bearing or to healthy mice. Mice were scanned by MRI prior to, 24 and
48 h after the particle injection. The lungs were then excised and analyzed histologically. MRI scans of metastases-bearing (A)–(D) or
healthy (E)–(H) BALB/c mice were taken prior to, 24 h, and 48 h after intravenous administration of Gd-liposome. The lung anatomy is
marked with the discontinuous green line while the gray accumulation of the Gd-liposomes in the lungs can be noticed in the diseased mice.
(C) and (D) 24 h and 48 h (respectively) post Gd liposomes injection. MRI images show an enhanced signal from the metastatic lungs (gray
areas are due to enhanced liposome accumulation in the metastatic sites). Histology. Rhodamine-labeled liposomes were injected
intravenously to metastases-bearing and healthy mice. Twenty-four hours later the lungs were excised. H&E and fluorescent images of the
metastatic (I), (J) and healthy (K), (L) lungs, respectively. The accumulation of the fluorescent red liposomes can be noticed in the metastatic
tissue (J), while the healthy tissue displayed only the blue DAPI nuclei staining. (M), (N) Liposome accumulation in metastatic lesions as a
function of the size of metastases. Mice bearing lung metastases were administered 100 nm Gd-liposomes intravenously. Twenty four hours
later, the lungs were excised, and the individual metastatic lesions were resected, and divided into three groups according to their sizes (M).
The Gd content in each group was quantified using ICP (N). Data is shown as the mean ± SD.
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Figure 4. Liposomes accumulate in the pre-metastatic niche. (A) Spontaneous metastasis can be detected in the lungs of mice approximately
three weeks after implanting a primary tumor. Before the metastases can be detected histologically or by imaging, the pre-metastatic lungs are
conditioned to harbor the metastatic cells. We examined the ability of liposomes to target the pre-metastatic niche in the lungs, i.e. the lung
tissues before metastasis could be detected in them by imaging. Mice were scanned throughout the study using MRI: before inducing the
primary tumor (B), on day 8 (C), and day 15 (D). None of the mice presented detectable metastases by MRI (B)–(D). Gd-loaded liposomes
were administered intravenously after the MRI scans. Twenty-four hours post injection the mice were sacrificed, lungs were excised and
evaluated histologically for the presence of micro-metastases that were not detected by MRI, and by ICP for a quantitative analysis of the
presence of Gd-liposomes. ICP analysis indicated that the accumulation of Gd-liposomes increased in the lungs as the time since induction of
the primary tumor increased (F). In some mice, micro-metastases were visualized histologically (G), even though they were undetectable by
MRI (E). Lungs diagnosed histologically with micro-metastases (G) had greater amounts of Gd-liposomes compared to pre-metastatic lungs
(F). Data are shown as the mean ± SDE of n=2 (control), n=6 (day 8), n=4 (day 15), n=2 (mets initiating); *p=0.074. Differences
between two means were tested using an unpaired two-sided Student’s t-test.
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presence in the metastasis subsequently confirmed histologi-
cally by fluorescent-histology of the tissue. For this, we
replaced the fluorescent ICG inside the liposomes with an
MRI contrast agent—gadolinium (Gd) [68]. In addition, we
doped the liposome membrane with sulforhodamine-lipids,
generating a multi-modal (fluorescence and MRI) diagnostic
liposome. A bright co-localization signal of the Gd-liposomes
inside the metastatic lesions was recorded by MRI 24 h after
the intravenous injection (figures 3(A)–(D)). The same
experiment carried out in healthy mice showed no Gd-lipo-
somes signal in the lungs (figures 3(E)–(H)). The accumula-
tion of Gd-liposomes in the metastatic lesions was confirmed
histologically. For this, the metastatic lungs were resected and
stained with H&E. The liposomal rhodamine signal coincided
with metastatic lesions (figure 3(J)). A fluorescent signal was
not found in the lungs of healthy animals (figure 3(L)). These
data confirmed our initial whole-animal fluorescent imaging
findings that 100 nm liposomes injected intravenously accu-
mulate in the metastatic tissue (figure 1), and indicated that
liposomes can be used as MRI contrast agents for imaging
metastasis.

One major requirement from nanoparticles is the ability
to target small metastatic lesions [101, 108]. For this, we
quantified the accumulation of nanoparticles in metastases of
different sizes: smaller than 2 mm, between 2 and 4 mm, and
larger than 4 mm. Metastases were induced experimentally in
the lungs of BALB/c mice by an intravenous injection of 4T1
cells. Once the metastases were detected by MR imaging,
mice were injected 100 nm Gd-loaded liposomes intrave-
nously. Twenty-four hours later, the mice were sacrificed,
lungs were excised, and the individual metastatic lesions were
resected and grouped according to size (figures 3(M), (N)).
All three metastasis groups (<2 mm, 2–4 mm, and >4 mm)
had significant Gd-liposomal presence. Higher levels of
nanoparticle accumulation were detected in the smallest
metastasis, reaching 3.1%±0.2% of the injected dose per
gram tumor in lesions smaller than 2 mm in diameter, com-
pared to 1.5%±0.02% and 1.0%±0.01% in the 2–4 mm
and >4 mm groups, respectively (figure 3(M)). The higher
accumulation of nanoparticles in the smaller lesions is
explained by higher vascular density and permeability in the
smaller lesions [109–111]. Similar tendencies, in which
nanoparticle’ accumulation per gram tumor increases as the
lesion size decreases, was reported also in primary tumors
[112]. It should also be noted that 2 mm lesions are below the
limit-of-detection of most clinical imaging systems, thereby
targeting imaging agents to such small lesions can facilitate
early metastatic detection [113].

Before metastases colonize in a healthy organ, bio-
chemical signals are sent from the primary tumor, to enable
the metastatic cells to adhere and progress at the distant
metastatic site [7, 114]. During this process the vasculature at
the destination organ becomes leaky [115]. Since lungs are a
primary site of metastatic dissemination, we tested whether
nanoparticles can be detected in the pre-metastatic lungs [8].
For this, a primary tumor was implanted in the rear flank of
BALB/c mice (figure 4(A)). One and two weeks post-
implantation of the primary tumor the mice were scanned

using MRI. No metastatic malignancy was detected by MRI
in the lungs (figures 4(B)–(E)). At these time points, mice
were injected with 100 nm Gd-liposomes intravenously.
Twenty four hours later (day 9 or day 16), mice were sacri-
ficed and the lungs were excised and fixated. All the histo-
logical slides were evaluated as normal (no evidence of
metastasis), except for two slides that showed foci of isolated
tumor cells (micro-metastasis, <0.2 mm, figure 4(G)). After
the histological analysis, the tissue blocks were digested and
analyzed for the presence of Gd-liposomes using ICP. A
gradual elevation in the levels of Gd was detected in the pre-
metastatic lungs compared to the healthy lungs over time
(figure 4(F)). Lungs that were evaluated histologically with
micro-metastasis had greater concentrations of Gd-liposomes,
reaching 0.059% of the injected dose. Having this said, using
an unpaired two-sided student t-test, we did not reach the
statistical level of significance we hoped for nanoparticle
detection in the pre-metastatic niche (p=0.074 versus
p<0.05). This is explained by the inefficiency of the
metastatic process, and the limit-of-detection of the existing
analytical tools. In metastasis, only 0.01% of the circulating
tumor cells colonizes at the metastatic site and form viable
metastases [4–6, 9, 116–118]. Respective to the injected
nanoparticles, 0.01% of the injected dose is 1.2 nM Gd, which
is near the limit of detection of Gd by ICP (0.3 ppb). This
explains the lower level of confidence of detection in the pre-
metastatic niche, rendering the development of more accurate
systems for studying nanoparticle distribution to the pre-
metastatic niche.

These results suggest that nanoparticles accumulate pre-
ferentially in the pre-metastatic lungs. This is explained by
biological conditioning of the lung tissue for the emergence of
metastases [7, 9, 114, 115, 119–121]. During this process the
vasculature at the target organ becomes hyper-permeable
[115], enabling nanoparticle accumulation in the pre-meta-
static lungs [120, 122, 123].

Ultimately, when a patient is diagnosed with a primary
tumor, the main concern is preventing future metastatic dis-
semination. Our data suggest that even before having imaging
evidence of the existence of metastatic lesions in an organ, the
pre-metastatic niche may be targeted and treated with nano-
particles; thereby, possibly, preventing future metastatic
progression at this site.

In summary, this study demonstrates that 100 nm lipo-
somes target triple negative murine breast cancer metastasis.
Our findings support the use of nanotechnology for imaging
and targeting medicines to metastases and ultimately to the
pre-metastatic niche.
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