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Dysfunctional endothelium contributes to more diseases than any other tissue in the body. Small interfering RNAs
(siRNAs) can help in the study and treatment of endothelial cells in vivo by durably silencing multiple genes
simultaneously, but efficient siRNA delivery has so far remained challenging. Here, we show that polymeric nanoparticles
made of low-molecular-weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby
facilitating the simultaneous silencing of multiple endothelial genes in vivo. Unlike lipid or lipid-like nanoparticles, this
formulation does not significantly reduce gene expression in hepatocytes or immune cells even at the dosage necessary
for endothelial gene silencing. These nanoparticles mediate the most durable non-liver silencing reported so far and
facilitate the delivery of siRNAs that modify endothelial function in mouse models of vascular permeability, emphysema,
primary tumour growth and metastasis.

T
he vascular system releases factors into the bloodstream,
changes the expression of specific receptors, modifies intercel-
lular junctions, and regulates the immune response1.

Endothelial cells also mediate biological functions such as endocy-
tosis and metabolism2. Because these processes relate fundamentally
to physiology, dysfunctional endothelium promotes more disease
than any other tissue in the body3. Yet, modulating the behaviour
of endothelial cells in vivo remains challenging, particularly in
cases that require the inhibition of multiple endothelial genes.

RNAi-mediated modification of gene expression has the poten-
tial to improve disease treatment and in vivo studies of complex bio-
logical processes. However, its utility is limited by inefficient
systemic delivery, with the exception of ionizable lipids and lipid-
like compounds termed lipidoids, which reduce hepatic gene
expression by 50% after injection of 0.01 mg kg21 siRNA (refs 4–7).
In contrast, efficient endothelial gene silencing without the
transfection of hepatocytes has remained challenging. Although
cationic lipids have been reported to deliver siRNA to endothelial
cells, these endothelial delivery systems require cumulative doses
of up to 7.5 mg kg21 to achieve robust gene silencing8–13.

Nanoformulations based on polymeric materials have delivered
siRNA to hepatocytes and melanoma14,15. Unlike lipid-based nano-
particles, polymer–nucleic acid nanoparticles condense via multi-
valent interactions, leading to significantly different physical
stabilities. One polymer class that has been investigated as a gene
delivery material is polyethyleneimine (PEI)16. Although nanoparti-
cles made from high-molecular-weight PEI (Mw ≈ 25,000 Da) have
delivered nucleic acids, they are associated with off-target effects17.
In contrast, nanoformulations from low-molecular-weight PEI
(Mw ≈ 600 Da) are relatively well tolerated but cannot facilitate
siRNA delivery17,18.

Here, we report an siRNA–nanoparticle formulation that reduces
endothelial gene expression by over 90% at a dose of 0.10 mg kg21

and by 50% at doses as low as 0.02 mg kg21. This formulation,
termed 7C1, differs from traditional lipid-based nanoparticle for-
mulations because it can deliver siRNA to lung endothelial cells at
low doses without substantially reducing gene expression in
pulmonary immune cells, hepatocytes or peritoneal immune cells.
We demonstrate that 7C1-mediated endothelial gene silencing

affects function in vivo by using our nanoformulation to modify
mouse models of vascular permeability, emphysema, lung tumour
growth and lung metastasis.

Efficient siRNA delivery to endothelium in vitro and in vivo
A diverse library of epoxide-modified lipid–polymer hybrids were
synthesized (Fig. 1a, Supplementary Fig. 1a). The compounds
were tested for their ability to reduce gene expression in HeLa
cells at four different lipid:siRNA mass ratios (2.5:1, 5:1, 10:1 and
15:1) (Supplementary Fig. 1b). HeLa cells expressing Firefly and
Renilla luciferase were chosen as a first-pass screen for these 2,000
nanoparticles formulated with siLuciferase because of the cost-effec-
tiveness of the assay5. We defined a successful nanoparticle as one
that silenced Firefly luminescence by more than 70%, but decreased
Renilla luminescence by less than 25%. Although only 0.9% of com-
pounds in the library were successful at a mass ratio of 2.5, 6.5%
were successful when the mass ratio was 15 (Table 1). We then
measured Firefly luminescence as a function of lipids bound to suc-
cessful PEI600 compounds. Luminescence decreased with the
number of lipids bound (Supplementary Fig. 1c). A subset of formu-
lations tested in HeLa cells were tested for their ability to deliver
siRNA to human (HMVEC) and murine (bEnd.3) endothelial
cells in vitro. The most effective compound, termed 7C1 based on
its composition, reduced target mRNA expression by more than
85% in HeLa, HMVECs and bEnd.3 cells at a dose of 30 nM
(Fig. 1b). Interestingly, 7C1 efficacy did not change with mass
ratio in HeLa cells (Supplementary Fig. 1d). Only 2 nM was required
to reduce target gene expression in bEnd.3 cells by 50%, and 7C1 did
not affect bEnd.3 cell morphology or induce apoptosis in vitro at
doses as high as 133 nM (Supplementary Fig. 1e,f ).

7C1 was synthesized by reacting C15 epoxide-terminated lipids
with PEI600 at a 14:1 molar ratio, and was formulated with
C14PEG2000 to produce nanoparticles (diameter between 35 and
60 nm) that were stable in PBS solution for at least 40 days
(Fig. 1c–e, Supplementary Fig. 1g–i). Particles formed multilamellar
vesicles rather than the periodic aqueous compartments containing
siRNA that make up stable nucleic-acid lipid particle formulations19

(Fig. 1d, Supplementary Fig. 1j). Because particle charge at different
values of pH can affect delivery by modifying interactions with
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serum proteins, the zeta potential was measured for 7C1 formulated
with siRNA at blood physiological pH (7.4) and pKa (ref. 6; Fig. 1f).
While 7C1 formed electrically neutral particles at pH 7.4, its pKa
was 5.0. This value is different than the pKa of particles optimized
for hepatocyte delivery20.

We investigated the serum kinetics and biodistribution of 7C1
siRNA nanoparticles in vivo. 7C1 was complexed with Alexa647-
tagged siRNA and injected intravenously. After 1 h, skin tissue
whole-mounted for confocal microscopy showed colocalization
between 7C1 and endothelial cells, suggesting endothelial cells
endocytosed 7C1 in vivo (Fig. 1g). Endothelial cell uptake was con-
firmed by an increase in Alexa647 mean fluorescence intensity in
endothelial cells sorted from pulmonary tissue 1 h after injection
with 7C1 formulated with Alexa647-tagged siRNA (Fig. 2g). 7C1
serum kinetics was then measured. 7C1 serum concentration
decreased by 50% within 20 min of intravenous injection, indicating
the formulation was rapidly cleared or endocytosed (Fig. 1h). To
investigate 7C1 biodistribution, Cy5.5 fluorescence was quantified
4 and 24 h after injection (when 7C1 serum concentrations were
negligible) (Fig. 1i). Renal fluorescence was high, indicating that
the kidneys aid in the clearance of siRNA delivered by 7C1.
In vitro, HMVECs take up 7C1 via caveolae- and clathrin-mediated
endocytosis (Fig. 2a).

To confirm that endothelial localization resulted in functional
siRNA delivery, mRNA was measured after 7C1 was formulated
with siRNAs targeting genes expressed primarily by endothelial
cells. 7C1 was formulated with siRNA targeting the gene ICAM-2
and injected with a dose of 0.6 mg kg21 on day one and four. Five
days later, skin was analysed with confocal microscopy and flow cyto-
metry (Supplementary Fig. 2a,b). ICAM-2 expression on lymph node
and omentum endothelial cells was also measured with flow cytome-
try (Supplementary Fig. 2b). ICAM-2 expression decreased compared
with PBS- and siLuciferase- (termed siCntrol) treated mice. 7C1 was
then formulated with 0.60, 0.05, 0.02 or 0.007 mg kg21 si-ICAM2
and injected once (Fig. 2b). Because ICAM-2 is principally expressed
by endothelial cells in all major tissue beds, this assay detects endo-
thelial gene silencing in any organ21. 7C1 reduced ICAM-2 mRNA
expression in the pulmonary, cardiovascular and renal endothelium
by 50% at doses of 0.02, 0.08 and 0.15 mg kg21, respectively
(Fig. 2b, Table 2). To ensure efficient delivery was not limited to
siICAM-2, we measured gene silencing in mice treated with siRNA
targeting VE-cadherin (VEcad), a junctional protein whose expression
is limited to endothelium. Cardiovascular, renal and pulmonary
VEcad mRNA decreased by 50% at doses of 0.04, 0.08 and less than
0.02 mg kg21, respectively (Fig. 2c, Table 2). 7C1-siVEcad also
reduced VEcad protein levels in whole-lung homogenates at
0.03 mg kg21 (Fig. 2d). We then investigated whether reduced
VEcad protein levels increased vascular permeability. Compared
with mice treated with PBS or siCntrol, the extravasation of Evans
Blue Dye out of the pulmonary vasculature increased 2.5-fold seven
and fourteen days after a single 0.6 mg kg21 injection of siVEcad
(Fig. 2e). These data demonstrate that 7C1 facilitates the most efficient
non-liver siRNA delivery reported to date.

Because in vivo multigene silencing requires highly efficient
delivery, it has been limited to hepatocytes5. 7C1 silenced five

endothelial genes (Tie1, Tie2, VEcad, VEGFR-2 and ICAM-2) con-
currently. Three days following intravenous injection with a total
dose of 0.25 mg kg21, target mRNA of all five genes decreased
between 60% and 80% in pulmonary vasculature (Fig. 2f,
Supplementary Fig. 2c–e). Target gene expression remained con-
stant after siCntrol was injected (total dose of 2.0 mg kg21),
suggesting that the reduced mRNA levels were due to RNAi.
To our knowledge, this is the first demonstration of multi-gene
silencing in endothelial cells in vivo.

Efficient delivery also facilitates durable gene silencing, because
the duration of gene silencing is generally dose-dependent5.
mRNA silencing was measured as a function of time after a
0.6 mg kg21 injection of siICAM-2 (Fig. 2g). Pulmonary ICAM-2
mRNA expression initially decreased by 92% and remained sup-
pressed by between 73% and 85% for 21 days. By contrast, cardio-
vascular and renal endothelial ICAM-2 expression increased
continually over the first 28 days, reaching 50% of initial expression
after day ten, again suggesting less efficient endothelial cell delivery
in these vascular beds compared with lung endothelium (Fig. 2g).
We then measured gene silencing in different organs after modifying
the particle size and 7C1:siRNA mass ratio (see Supplementary
Section ‘7C1 biophysical optimization’; Supplementary Fig. 2f–i)).
7C1 was complexed with siRNA targeting the endothelial specific
gene Tie2 (ref. 21). In all cases, the most potent delivery was measured
in pulmonary endothelial cells (Supplementary Fig. 2f–i).

Although others have reported siRNA delivery to the lung, func-
tional gene silencing required doses much higher than
0.02 mg kg21. Because the relative silencing in different cell types
dictates the type of in vivo models nanoparticles can be used to
study, we studied 7C1 biodistribution and silencing in pulmonary
epithelial cells, haematopoietic cells, T cells and B cells (Fig. 3a–c).
We also measured gene silencing in hepatocytes and peritoneal
immune cells, two cell types that have been preferentially transfected
by lipid nanoparticles (Fig. 3d–f).

We quantified the uptake of Alexa647-labelled siRNA delivered
by 7C1. One hour after a 1.0 mg kg21 injection, lungs were digested
into a single cell suspension and labelled with antibodies. Flow cyto-
metry revealed that Alexa647 median fluorescent intensity was sig-
nificantly higher in endothelial cells than in pulmonary epithelial
cells, haematopoietic cells, T cells and B cells (Fig. 3a). Twenty-
four hours after injection, endothelial cell uptake decreased.
Although the significance of the decreased signal is unknown, it
could result from fluorophore cleavage. We then used flow cytome-
try to simultaneously quantify ICAM-2 protein expression in pul-
monary endothelial cells, haematopoietic cells, T cells and B cells.
Three days following injection of 0.30, 0.20, 0.10 or 0.05 mg kg21, pul-
monary endothelial cell ICAM-2 median fluorescent intensity
decreased between 60% and 68% compared with cells from siCntrol
treated mice (Fig. 3b). ICAM-2 median fluorescent intensity did not
decrease in pulmonary haematopoietic cells, T cells or B cells. The
relative delivery to lung endothelium and epithelium was then quan-
tified with siRNA targeting Integrinß1 (Fig. 3c). Two days after injec-
tion, lung were digested before epithelial and endothelial cells were
sorted into separate tubes with fluorescence activated cell sorting.

Table 2 | Intravenous dose required to reduce target gene
mRNA expression by 50% in vivo (mg kg21) (ED50).

Gene Lung Heart Kidney

VEcad 0.02 0.04 0.08
ICAM2 0.02 0.08 0.15
Tie2 0.04 0.12 0.12
VEGFR-2* 0.05 0.10 0.25
Tie1* 0.05 0.10 0.15

*ED50 value calculated from multigene silencing experiment (Fig. 2d).

Table 1 | Per cent of compounds reducing Firefly
luminescence more than 70% while not reducing Renilla
luminescence more than 25% as a function of lipid:siFire
mass ratio.

Compound:siFire mass ratio Successful nanoparticles (%)

2.5 0.9
5 0.7
10 3.5
15 6.5
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The purity of the sorted cells was confirmed by measuring cell-specific
markers using RT–PCR (PCR with reverse transcription,
Supplementary Fig. 2j). Compared with siCntrol-treated cells, endo-
thelial cell Integrinß1 mRNA decreased by between 70% and 82%,
while epithelial cell mRNA did not change substantially (Fig. 3c).
These data indicate that, at these doses, 7C1 preferentially delivers
siRNA to pulmonary endothelial cells.

We then analysed whether 7C1 delivered siRNA to hepatocytes,
which are preferentially targeted by many lipid nanoparticle

formulations (Fig. 3d). We measured the expression of a hepato-
cyte-specific gene Factor 7 (F7) after injection with the highly
potent siF75. F7 serum concentration remained constant after siF7
was injected at a dose of 1.5 mg kg21 and was only reduced by
35% after an injection of 2.0 mg kg21, but the positive control
lipid nanoparticle Hepat01 decreased F7 expression by 95% after a
0.30 mg kg21 dose (Fig. 3d). To confirm that 7C1 reduced endo-
thelial gene silencing without silencing hepatocyte gene expression,
7C1 was simultaneously complexed with siF7 and siTie2 (Fig. 3e).
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Figure 1 | 7C1 synthesis, characterization and in vivo biodistribution. a, 7C1 synthesis scheme. b, Target gene expression 24 h following 30 nM treatment

with siRNA in human cervical carcinoma (HeLa), human primary endothelial (HMVEC) and murine endothelial (bEnd.3) cells. HeLa target gene expression

was measured as Firefly luminescence in HeLa cells expressing Luciferase that were treated with siRNA targeting luciferase. bEnd.3 and HMVEC target gene

expression was measured as Tie2 mRNA levels following treatment with siRNA targeting Tie2. c, 7C1 formulation scheme. 7C1 nanoparticles were mixed with

C14PEG2000 and siRNA in a high-throughput microfluidic chamber as previously described30. d, 7C1 internal structure characterized by cryo-TEM. Dark bands

indicate lipid layers and light bands indicate regions with siRNA. e, Average 7C1 hydrodynamic diameter, measured by dynamic light scattering, and weighted

by volume (N¼ 20 formulations). f, 6,P-toluidinylnapthalene-2-sulfonate (TNS) fluorescence of formulated 7C1 nanoparticles as a function of pH (used to

measure 7C1 pKa). g, Representative confocal image of Alexa647-tagged siRNA complexed to 7C1 1 h after intravenous injection. CD31 is a ubiquitous

marker for endothelium. h, Serum Cy5.5 concentration following injection with 7C1-Cy5.5 siRNA or naked Cy5.5 siRNA. i, Cy5.5 fluorescence per mg tissue

after injection with 7C1-Cy5.5 siRNA. Tissues were removed after injection and weighed individually. Cy5.5 intensity was normalized to each individual tissue.

Time points were selected to measure systemic siRNA accumulation after Cy5.5 was cleared from serum. N¼ 4–5 mice per group. In all cases, data are

shown as mean+s.d. **P , 0.005, +P . 0.75.
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Because efficacy can vary with the molar ratio of PEG and choles-
terol, we performed this two-gene experiment with particles formu-
lated with different 7C1:cholesterol:C14PEG2000 molar ratios. Two
formulations reduced lung Tie2 mRNA by nearly 90% after a
single 0.15 mg kg21 dose, but did not reduce F7 expression (Fig. 3e).

Intravenously injected particles may also transfect peritoneal
immune cells, especially CD11bþ monocytes and macrophages22.
CD45 median fluorescent intensity was quantified in immune
cells isolated from the peritoneal cavity following intravenous injec-
tion of 2.0 mg kg21 7C1 formulated with an siRNA targeting CD45
(siCD45)22 (Fig. 3f ). CD45 protein expression remained constant in
macrophages, B cells, T cells and dendritic cells following treatment
with 7C1 (Fig. 3f ). By contrast, CD45 expression decreased in
macrophages cells following treatment with the positive control
lipid nanoparticle C12-200. Taken together, these data indicate
that 7C1 does not deliver siRNA to hepatocytes or peritoneal
immune cells in healthy BL/6 mice at any dose tested.

Endothelial RNAi affects multiple animal models
Whether RNA delivery could change endothelial function was then
investigated in mouse models of emphysema, primary tumour
growth and lung metastasis. Emphysema is characterized by
decreased pulmonary surface area, which reduces gas transport,
causing dyspnea and cough23,24. Along with macrophage-mediated
protease imbalance, decreased VEGF and VEGFR-2 expression
has been documented in the lungs of patients with chronic obstruc-
tive pulmonary disease. Moreover, genetic Cre-lox mediated

deletion of VEGF causes emphysema in mice24. VEGF receptor
blockade with SU5416 promotes emphysema in rodents, leading
to decreased alveolar surface to volume ratios, increased lung
volume and increased distance between alveolar walls (termed the
mean linear intercept)23. Because SU5416 simultaneously inhibits
VEGFR-1 and VEGFR-2, we characterized the pulmonary pheno-
type following VEGFR-2 specific silencing. VEGFR-2 silencing
induced emphysema-like changes, indicated by decreased alveolar
surface to volume ratios and increases in lung volume and mean
linear intercept compared with siCntrol-treated mice (Fig. 3g–i,k).
These changes were not due to infiltration of myeloid cells
(Fig. 3j). These results suggest VEGFR-2 specific silencing is suffi-
cient to induce emphysema-like phenotypes in mice and that sys-
temic endothelial cell RNAi can be used to investigate the role of
endothelial gene function in vivo.

The therapeutic effect of endothelial RNAi on primary tumour
growth was then investigated in a Lewis lung carcinoma model.
Previous work has demonstrated that antibodies targeting
VEGFR-1 and Dll4 can reduce primary tumour growth through dis-
rupted or non-productive angiogenesis, respectively25,26. In particu-
lar, targeting VEGFR-1, which is expressed on endothelial cells and
pro-angiogenic myeloid cells, reduced tumour progression, metasta-
sis and formation of a pre-metastatic niche27,28. However, mono-
clonal antibodies may function differently from RNAi-based
methods, which inhibit both extracellular and intracellular signal-
ling29. To investigate whether therapeutic deletion of VEGFR-1
and Dll4, both of which have intracellular signalling components,
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would have similar effects as therapeutic antibodies, 7C1 was com-
plexed with siCntrol, siVEGFR-1 or siDll4. Compared with siCntrol,
siVEGFR-1 and siDll4 formulations had a significant therapeutic
effect, reducing primary tumour growth by 40% and 70%, respect-
ively, and increasing tumour necrosis (Fig. 4a–c). While some
tumours treated with siVEGFR-1 exhibited high levels of cell
death, others showed low levels30. These data suggest that targeted
deletion of both the intracellular and extracellular portion of
VEGFR-1 or Dll4 may reduce primary tumour growth.

The roles of VEGFR-1 and Dll4 in primary tumour growth
have been studied extensively, but the role of these genes, parti-
cularly Dll4, in metastasis is less clearly understood31,32.
Consequently, the effect of VEGFR-1 and Dll4 deletion on lung
tumour metastases was studied in a metastatic Lewis lung carcinoma
model (Fig. 4d,e, Supplementary Fig. 3). siVEGFR-1 reduced
surface metastases by 52%, while siDll4 reduced surface metastases
by 63% compared with siCntrol-treated mice (Fig. 4d,e). Lung
weight, which correlates to the growth of lung metastases, decreased
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by 50% after siVEGFR-1 therapy and 60% after siDll4 therapy
(Supplementary Fig. 3).

7C1 in vivo tolerability
7C1 nanoformulations were well tolerated in animal models of tox-
icity following acute and chronic high-dose treatment
(Supplementary Fig. 4). We measured the serum concentrations
of markers associated with toxicity after four 0.6 mg kg21 intrave-
nous injections in highly immunoactive CD1þ mice, a mouse
model used for preclinical toxicology studies. Mice were injected
with a 0.6 mg kg21 dose of siCntrol or siICAM-2 once a week for
four weeks. Forty-eight hours after the last injection, the serum con-
centrations of markers for hepatic, cardiovascular and renal injury
were quantified. Importantly, we observed no evidence of kidney
damage (Supplementary Fig. 4a).

7C1 tolerability was also investigated in BL/6 mice at doses much
higher than those required for functional gene silencing
(2 mg kg21) in acute and chronic models. Over 28 days, mice
were injected eight times with PBS solution or 2 mg kg21 7C1.
Murine weight gain equalled that of mice injected with PBS
(Supplementary Fig. 4b). Four hours after the final injection, mice
were killed and lungs were removed before mRNA expression of
cytokines (IL-6, TNF-a), markers of endothelial dysfunction
(ICAM-2, E-selectin) and immune cell infiltration (CD45) were
quantified (Supplementary Fig. 4c). Serum concentrations of 30
cytokines were also quantified. mRNA expression and cytokine
concentration did not increase significantly when compared to
PBS-treated mice (Supplementary Fig. 4d).

We then measured serum cytokine concentration 2, 4, 6 and 24 h
following a 2.0 mg kg21 injection. Although the serum concen-
trations of five factors did increase between 2 and 6 h, only one

factor (CXCL2) equalled the concentration in mice treated with a
low-dose lipopolysaccharide (LPS) control and all five returned to
baseline 24 h after injection (Supplementary Fig. 4e). These data
suggest that, while 7C1 probably interacts with cells to produce a
transient response at doses much higher than those required for
gene silencing, the formulation appears to be well tolerated in
multiple mouse models in vivo.

Conclusions
We have identified a nanoparticle (7C1) that efficiently delivers
siRNA to endothelial cells. Unlike previously reported lipid and lipi-
doid-based nanoparticles, 7C1 transfected endothelial cells in vivo at
low doses, without significantly reducing gene expression in hepato-
cytes, peritoneal immune cells, pulmonary epithelial cells or pul-
monary immune cells. The exact molecular mechanism governing
this effect remains to be determined, but it seems to involve the
interaction of 7C1 with serum proteins, which can promote delivery
to certain cell types33. As a result, 7C1 may be an interesting system
to study how physiochemical interactions between nanomaterials
and serum proteins direct nanoparticles to endothelial cells
in vivo34–37. This nanoformulation enables the simultaneous silen-
cing of multiple endothelial genes. Although some immune cells
are known to express Tie1, Tie2 and ICAM-2, the lack of significant
pulmonary immune cell gene silencing (mediated by 7C1) indicates
that such multigene silencing occurs primarily in endothelial cells.
We therefore anticipate that 7C1 can be useful in the study of
gene combinations in complex biological pathways in vivo, a strategy
called in vivo genomics.

Moreover, we have found that 7C1 reduces primary tumour
growth and lung metastases in a model of lung cancer. As a
result, although this study examined targets whose extracellular
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activity can also be inhibited by antibodies, future therapies may be
designed to target combinations of proteins currently considered
‘undruggable’. Similarly, future RNA therapies may enhance the
effects of non-RNA drugs (for example, modifying the expression
of the gene involved in the exocytosis of a small molecule might
enhance its delivery).

Finally, we have shown that 7C1 durably reduces target gene
expression in multiple animal models. This extended therapeutic
effect may increase the utility of in vivo endothelial RNAi.
Because 7C1 is well tolerated at doses far higher than those required
for gene silencing, we believe this technology will be used to manip-
ulate gene expression in vivo. In summary, 7C1 nanoformulations
should provide biologists and engineers with a new tool to efficiently
deliver siRNA to endothelium.
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